Cross-section adjustment methods based on minimum variance unbiased estimation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unbiased minimum variance estimation for systems with unknown exogenous inputs

A new method is developed for the state estimation of linear discrete-time stochastic system in the presence of unknown disturbance. The obtained filter is optimal in the unbiased minimum variance sense. The necessary and sufficient conditions for the existence and the stability of the filter are given.

متن کامل

The Minimum Variance Unbiased Estimator

This module motivates and introduces the minimum variance unbiased estimator (MVUE). This is the primary criterion in the classical (frequentist) approach to parameter estimation. We introduce the concepts of mean squared error (MSE), variance, bias, unbiased estimators, and the bias-variance decomposition of the MSE. The Minimum Variance Unbiased Estimator 1 In Search of a Useful Criterion In ...

متن کامل

On the asymptotic stability of minimum-variance unbiased input and state estimation

In this note, we investigate the asymptotic stability of the filter forminimum-variance unbiased input and state estimation developed by Gillijns and De Moor. Sufficient conditions for the stability are proposed and proven, with inspiration from the Kalman filter stability analysis. © 2012 Elsevier Ltd. All rights reserved.

متن کامل

Weak Lensing Reconstruction and Power Spectrum Estimation: Minimum Variance Methods

Large-scale structure distorts the images of background galaxies, which allows one to measure directly the projected distribution of dark matter in the universe and determine its power spectrum. Here we address the question of how to extract this information from the observations. We derive minimum variance estimators for projected density reconstruction and its power spectrum and apply them to...

متن کامل

A Unified Solution to Unbiased Minimum-Variance Estimation for Systems with Unknown Inputs

A parameterized three-stage Kalman filter (PTSKF) is proposed, serving as a unified solution to unbiased minimum-variance estimation for systems with unknown inputs that affect both the system and the outputs. The PTSKF is characterized by two design parameters and includes three parts: one is for the main system state estimate, the second is for the optimal unknown inputs estimate, and the las...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nuclear Science and Technology

سال: 2016

ISSN: 0022-3131,1881-1248

DOI: 10.1080/00223131.2016.1146637